Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202319248, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38476019

RESUMO

Heterogeneous biocatalysis is highly relevant in biotechnology as it offers several benefits and practical uses. To leverage the full potential of heterogeneous biocatalysts, the establishment of well-crafted protocols, and a deeper comprehension of enzyme immobilization on solid substrates are essential. These endeavors seek to optimize immobilized biocatalysts, ensuring maximal enzyme performance within confined spaces. For this aim, multidimensional characterization of heterogeneous biocatalysts is required. In this context, spectroscopic and microscopic methodologies conducted at different space and temporal scales can inform about the intraparticle enzyme kinetics, the enzyme spatial distribution, and the mass transport issues. In this Minireview, we identify enzyme immobilization, enzyme catalysis, and enzyme inactivation as the three main processes for which advanced characterization tools unveil fundamental information. Recent advances in operando characterization of immobilized enzymes at the single-particle (SP) and single-molecule (SM) levels inform about their functional properties, unlocking the full potential of heterogeneous biocatalysis toward biotechnological applications.

2.
ACS Appl Mater Interfaces ; 16(13): 15993-16002, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38509001

RESUMO

Biomaterials capable of delivering therapeutic proteins are relevant in biomedicine, yet their manufacturing relies on centralized manufacturing chains that pose challenges to their remote implementation at the point of care. This study explores the viability of confined cell-free protein synthesis within porous hydrogels as biomaterials that dynamically produce and deliver proteins to in vitro and in vivo biological microenvironments. These functional biomaterials have the potential to be assembled as implants at the point of care. To this aim, we first entrap cell-free extracts (CFEs) from Escherichia coli containing the transcription-translation machinery, together with plasmid DNA encoding the super folded green fluorescence protein (sGFP) as a model protein, into hydrogels using various preparation methods. Agarose hydrogels result in the most suitable biomaterials to confine the protein synthesis system, demonstrating efficient sGFP production and diffusion from the core to the surface of the hydrogel. Freeze-drying (FD) of agarose hydrogels still allows for the synthesis and diffusion of sGFP, yielding a more attractive biomaterial for its reconstitution and implementation at the point of care. FD-agarose hydrogels are biocompatible in vitro, allowing for the colonization of cell microenvironments along with cell proliferation. Implantation assays of this biomaterial in a preclinical mouse model proved the feasibility of this protein synthesis approach in an in vivo context and indicated that the physical properties of the biomaterials influence their immune responses. This work introduces a promising avenue for biomaterial fabrication, enabling the in vivo synthesis and targeted delivery of proteins and opening new paths for advanced protein therapeutic approaches based on biocompatible biomaterials.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Animais , Camundongos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Hidrogéis/uso terapêutico , Sefarose , Próteses e Implantes
3.
ACS Appl Mater Interfaces ; 16(1): 833-846, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38135284

RESUMO

Enzyme immobilization is a key enabling technology for a myriad of industrial applications, yet immobilization science is still too empirical to reach highly active and robust heterogeneous biocatalysts through a general approach. Conventional protein immobilization methods lack control over how enzymes are oriented on solid carriers, resulting in negative conformational changes that drive enzyme deactivation. Site-selective enzyme immobilization through peptide tags and protein domains addresses the orientation issue, but this approach limits the possible orientations to the N- and C-termini of the target enzyme. In this work, we engineer the surface of two model dehydrogenases to introduce histidine clusters into flexible regions not involved in catalysis, through which immobilization is driven. By varying the position and the histidine density of the clusters, we create a small library of enzyme variants to be immobilized on different carriers functionalized with different densities of various metal chelates (Co2+, Cu2+, Ni2+, and Fe3+). We first demonstrate that His-clusters can be as efficient as the conventional His-tags in immobilizing enzymes, recovering even more activity and gaining stability against some denaturing agents. Furthermore, we find that the enzyme orientation as well as the type and density of the metal chelates affect the immobilization parameters (immobilization yield and recovered activity) and the stability of the immobilized enzymes. According to proteomic studies, His-clusters enable a different enzyme orientation as compared to His-tag. Finally, these oriented heterogeneous biocatalysts are implemented in batch reactions, demonstrating that the stability achieved by an optimized orientation translates into increased operational stability.


Assuntos
Enzimas Imobilizadas , Histidina , Enzimas Imobilizadas/química , Histidina/química , Proteômica , Engenharia de Proteínas , Metais , Proteínas de Membrana
4.
Chembiochem ; 24(2): e202200614, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36385460

RESUMO

The development of methods to engineer and immobilize amine transaminases (ATAs) to improve their functionality and operational stability is gaining momentum. The quest for robust, fast, and easy-to-use methods to screen the activity of large collections of transaminases, is essential. This work presents a novel and multiplex fluorescence-based kinetic assay to assess ATA activity using 4-dimethylamino-1-naphthaldehyde as an amine acceptor. The developed assay allowed us to screen a battery of amine donors using free and immobilized ATAs from different microbial sources as biocatalysts. As a result, using chromatographic methods, 4-hydroxybenzylamine was identified as the best amine donor for the amination of 5-(hydroxymethyl)furfural. Finally, we adapted this method to determine the apparent Michaelis-Menten parameters of a model immobilized ATA at the microscopic (single-particle) level. Our studies promote the use of this multiplex, multidimensional assay to screen ATAs for further improvement.


Assuntos
Aminas , Enzimas Imobilizadas , Aminas/química , Biocatálise , Aminação , Enzimas Imobilizadas/metabolismo , Transaminases/metabolismo
5.
ACS Appl Mater Interfaces ; 14(3): 4285-4296, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35020352

RESUMO

Scalability, process control, and modularity are some of the advantages that make flow biocatalysis a key-enabling technology for green and sustainable chemistry. In this context, rigid porous solid membranes hold the promise to expand the toolbox of flow biocatalysis due to their chemical stability and inertness. Yttrium-stabilized zirconia (YSZ) fulfills these properties; however, it has been scarcely exploited as a carrier for enzymes. Here, we discovered an unprecedented interaction between YSZ materials and His-tagged enzymes that enables the fabrication of multifunctional biocatalytic membranes for bioredox cascades. X-ray photoelectron spectroscopy suggests that enzyme immobilization is driven by coordination interactions between the imidazole groups of His-tags and both Zr and Y atoms. As model enzymes, we coimmobilized in-flow a thermophilic hydroxybutyryl-CoA dehydrogenase (TtHBDH-His) and a formate dehydrogenase (His-CbFDH) for the continuous asymmetric reduction of ethyl acetoacetate with in situ redox cofactor recycling. Fluorescence confocal microscopy deciphered the spatial organization of the two coimmobilized enzymes, pointing out the importance of the coimmobilization sequence. Finally, the coimmobilized system succeeded in situ, recycling the redox cofactor, maintaining the specific productivity using only 0.05 mM NADH, and accumulating a total enzyme turnover number of 4000 in 24 h. This work presents YSZ materials as ready-to-use carriers for the site-directed enzyme in-flow immobilization and the application of the resulting heterogeneous biocatalysts for continuous biomanufacturing.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/metabolismo , Materiais Biocompatíveis/metabolismo , Formiato Desidrogenases/metabolismo , Ítrio/metabolismo , Zircônio/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/química , Materiais Biocompatíveis/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Formiato Desidrogenases/química , Teste de Materiais , Ítrio/química , Zircônio/química
6.
ACS Catal ; 11(24): 15051-15067, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34956691

RESUMO

Multidimensional kinetic analysis of immobilized enzymes is essential to understand the enzyme functionality at the interface with solid materials. However, spatiotemporal kinetic characterization of heterogeneous biocatalysts on a microscopic level and under operando conditions has been rarely approached. As a case study, we selected self-sufficient heterogeneous biocatalysts where His-tagged cofactor-dependent enzymes (dehydrogenases, transaminases, and oxidases) are co-immobilized with their corresponding phosphorylated cofactors [nicotinamide adenine dinucleotide phosphate (NAD(P)H), pyridoxal phosphate (PLP), and flavin adenine dinucleotide (FAD)] on porous agarose microbeads coated with cationic polymers. These self-sufficient systems do not require the addition of exogenous cofactors to function, thus avoiding the extensive use of expensive cofactors. To comprehend the microscopic kinetics and thermodynamics of self-sufficient systems, we performed fluorescence recovery after photobleaching measurements, time-lapse fluorescence microscopy, and image analytics at both single-particle and intraparticle levels. These studies reveal a thermodynamic equilibrium that rules out the reversible interactions between the adsorbed phosphorylated cofactors and the polycations within the pores of the carriers, enabling the confined cofactors to access the active sites of the immobilized enzymes. Furthermore, this work unveils the relationship between the apparent Michaelis-Menten kinetic parameters and the enzyme density in the confined space, eliciting a negative effect of molecular crowding on the performance of some enzymes. Finally, we demonstrate that the intraparticle apparent enzyme kinetics are significantly affected by the enzyme spatial organization. Hence, multiscale characterization of immobilized enzymes serves as an instrumental tool to better understand the in operando functionality of enzymes within confined spaces.

7.
Sci Rep ; 11(1): 22585, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799621

RESUMO

A theoretical approach has been developed here to describe the slow diffusion of small charged molecules of sodium dithionite (S2O42-) in polyelectrolyte multilayers (PEMs) composed of polyallylamine hydrochloride (PAH) and polystyrene sulfonate (PSS), which is demonstrated here to be a case of subdifussion. Diffusion is measured experimentally by recording the quenching of the fluorescence of (7-nitrobenz-2-oxa-1,3-diazol-4yl) amino (NBD) labelled PAH layers assembled on silica particles by flow cytometry. NBD is reduced when it encounters dithionite leading to the disappearance of the fluorescence. The fluorescence decay curves show a slow diffusion of dithionite, that does not follow classical Fickean law. Dithionite diffusion in the PEMs is shown to be a non-Markovian process and the slow diffusion can be described via diffusion equations with fractional time derivatives. Results are explained assuming subdifussion of dithionite in the PEMs, as a result of the trapping of the negatively charged dithionite in the positively charged layers of PAH.

8.
Bioconjug Chem ; 32(9): 1966-1972, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34410702

RESUMO

We herein describe a bioinspired solid-phase assembly of a multienzyme system scaffolded on an artificial cellulosome. An alcohol dehydrogenase and an ω-transaminase were fused to cohesin and dockerin domains to drive their sequential and ordered coimmobilization on agarose porous microbeads. The resulting immobilized scaffolded enzymatic cellulosome was characterized through quartz crystal microbalance with dissipation and confocal laser scanning microscopy to demonstrate that both enzymes interact with each other and physically colocalize within the microbeads. Finally, the assembled multifunctional heterogeneous biocatalyst was tested for the one-pot conversion of alcohols into amines. By using the physically colocalized enzymatic system confined into porous microbeads, the yield of the corresponding amine was 1.3 and 10 times higher than the spatially segregated immobilized system and the free enzymes, respectively. This work establishes the basis of a new concept to organize multienzyme systems at the nanoscale within solid and porous immobilization carriers.


Assuntos
Celulossomas , Sequência de Aminoácidos , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona
9.
Bioelectrochemistry ; 138: 107688, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33227594

RESUMO

Supported Lipid Bilayers (SLBs) on Polyelectrolyte Multilayers (PEMs) have large potential as models for developing sensor devices. SLBs can be designed with receptors and channels, which benefit from the biological environment of the lipid layers, to create a sensing interface for ions and biomarkers. PEMs assembled by the Layer-by-Layer (LBL) technique and used as supports for a lipid bilayer enable an easy integration of the bilayer on almost any surface and device. For electrochemical sensors, LBL assembly enables nanoscale tunable separation of the lipid bilayer from the electrode surface, avoiding undesired effects of the electrode surface on the lipid bilayers. We study the fabrication of valinomycin-doped SLBs on PEMs as a model system for biophysical studies and for selective ion sensing. SLBs are fabricated from dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylserine (DOPS) 50:50 vesicles doped with valinomycin, as a K+-selective carrier. SLBs were deposited on electrodes coated with poly(allyl amine hydrochloride) (PAH) and poly(styrene sodium sulfonate) (PSS) multilayers. Lipid bilayer formation was monitored by using Quartz Crystal Microbalance with Dissipation (QCMD) technique and Atomic Force Microscopy (AFM). Electrochemical impedance spectroscopy (EIS) and potentiometric measurements were performed to assess K+ selectivity over other ions and the potential of valinomycin-doped SLBs for K+-sensing.


Assuntos
Eletricidade , Bicamadas Lipídicas/química , Polieletrólitos/química , Valinomicina/química , Eletrodos , Fosfatidilcolinas/química , Propriedades de Superfície
10.
Soft Matter ; 13(47): 8922-8929, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29143830

RESUMO

Supported membranes on polymer cushions are of fundamental interest as models for cell membranes. The use of polyelectrolyte multilayers (PEMs) assembled by the layer by layer (LbL) technique as supports for a bilayer allows for easy integration of the lipid bilayer on surfaces and devices and for nanoscale tunable spacing of the lipid bilayer. Controlling ionic permeability in lipid bilayers supported on PEMs triggers potential applications in sensing and as models for transport phenomena in cell membranes. Lipid bilayers displaying gramicidin channels are fabricated on top of polyallylamine hydrochloride (PAH) and polystyrene sulfonate (PSS) multilayer films, by the assembly of vesicles of phosphatidylcholine and phosphatidylserine, 50 : 50 M/M, carrying gramicidin (GA). Quartz crystal microbalance with dissipation shows that the vesicles with GA fuse into a bilayer. Atomic force microscopy reveals that the presence of GA alters the bilayer topography resulting in depressions in the bilayer of around 70 nm in diameter. Electrochemical impedance spectroscopy (EIS) studies show that supported bilayers carrying GA have smaller resistances than the bilayers without GA. Lipid layers carrying GA display a higher conductance for K+ than for Na+ and are blocked in the presence of Ca2+.

11.
ACS Appl Mater Interfaces ; 9(44): 38242-38254, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29039643

RESUMO

Silencing RNA (siRNA) technologies emerge as a promising therapeutic tool for the treatment of multiple diseases. An ideal nanocarrier (NC) for siRNAs should be stable at physiological pH and release siRNAs in acidic endosomal pH, fulfilling siRNA delivery only inside cells. Here, we show a novel application of polyamine phosphate NCs (PANs) based on their capacity to load negatively charged nucleic acids and their pH stability. PANs are fabricated by complexation of phosphate anions from phosphate buffer solution (PB) with the amine groups of poly(allylamine) hydrochloride as carriers for siRNAs. PANs are stable in a narrow pH interval, from 7 to 9, and disassemble at pH's higher than 9 and lower than 6. siRNAs are encapsulated by complexation with poly(allylamine) hydrochloride before or after PAN formation. PANs with encapsulated siRNAs are stable in cell media. Once internalized in cells following endocytic pathways, PANs disassemble at the low endosomal pH and release the siRNAs into the cytoplasm. Confocal laser scanning microscopy (CLSM) images of Rhodamine Green labeled PANs (RG-PANs) with encapsulated Cy3-labeled siRNA in A549 cells show that siRNAs are released from the PANs. Colocalization experiments with labeled endosomes and either labeled siRNAs prove the translocation of siRNAs into the cytosol. As a proof of concept, it is shown that PANs with encapsulated green fluorescence protein (GFP) siRNAs silence GFP in A549 cells expressing this protein. Silencing efficacy was evaluated by flow cytometry, CLSM, and Western blot assays. These results open the way for the use of poly(allylamine) phosphate nanocarriers for the intracellular delivery of genetic materials.


Assuntos
Alilamina/química , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas , Fosfatos , RNA Interferente Pequeno
12.
Mater Sci Eng C Mater Biol Appl ; 80: 677-687, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28866215

RESUMO

The development of antifouling coatings with restricted cell and bacteria adherence is fundamental for many biomedical applications. A strategy for the fabrication of antifouling coatings based on the layer-by-layer assembly and thermal annealing is presented. Polyelectrolyte multilayers (PEMs) assembled from chitosan and hyaluronic acid were thermally annealed in an oven at 37°C for 72h. The effect of annealing on the PEM properties and topography was studied by atomic force microscopy, ζ-potential, circular dichroism and contact angle measurements. Cell adherence on PEMs before and after annealing was evaluated by measuring the cell spreading area and aspect ratio for the A549 epithelial, BHK kidney fibroblast, C2C12 myoblast and MC-3T3-E1 osteoblast cell lines. Chitosan/hyaluronic acid PEMs show a low cell adherence that decreases with the thermal annealing, as observed from the reduction in the average cell spreading area and more rounded cell morphology. The adhesion of S. aureus (Gram-positive) and E. coli (Gram-negative) bacteria strains was quantified by optical microscopy, counting the number of colony-forming units and measuring the light scattering of bacteria suspension after detachment from the PEM surface. A 20% decrease in bacteria adhesion was selectively observed in the S. aureus strain after annealing. The changes in mammalian cell and bacteria adhesion correlate with the changes in topography of the chitosan/hyaluronic PEMs from a rough fibrillar 3D structure to a smoother and planar surface after thermal annealing.


Assuntos
Quitosana/química , Animais , Aderência Bacteriana , Escherichia coli , Ácido Hialurônico , Polieletrólitos , Staphylococcus aureus , Propriedades de Superfície
13.
J Phys Chem B ; 121(5): 1158-1167, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28084736

RESUMO

The impact of polyanions on the formation of lipid bilayers on top of polyelectrolyte multilayers (PEMs) with poly(allylamine hydrochloride) (PAH) as the top layer is studied for the deposition of vesicles of mixed lipid composition, 50:50 molar ratio of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and negatively charged 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS). PEMs are assembled with polystyrene sulfonate (PSS), poly(acrylic acid) (PAA), and alginic acid sodium salt (Alg) as polyanions. The assembly of the vesicles on the PEMs is followed by means of the quartz crystal microbalance with dissipation. Fluorescence recovery after photobleaching measurements are applied to evaluate bilayer formation. Whereas a bilayer is formed on top of PAH/PSS multilayers, the vesicles are adsorbed on top of PAH/Alg and PAH/PAA multilayers, remaining unruptured or only partially fused. The influence of the surface composition of the PEM and of the bulk properties of the film are analyzed. The phosphate ions present in phosphate-buffered saline (PBS) play a fundamental role in bilayer formation on top of PAH/PSS as they complex with PAH and render the surface potential close to zero. For PAH/PAA and PAH/Alg, PBS renders the surface negative. X-ray photoelectron spectroscopy shows that the dibasic phosphate ions from PBS complex preferentially with PAH in PAH/PAA and PAH/Alg multilayers, whereas monobasic phosphates complex with PAH in PAH/PSS. An explanation for the absence of bilayer formation on PAH/PAA and PAH/Alg is given on the basis of the different affinities of phosphate ions for PAH in combination with the different polyanions.

14.
J Nanosci Nanotechnol ; 16(6): 5696-700, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27427617

RESUMO

In this manuscript we review work of our group on the assembly of lipid layers on top of polyelectrolyte multilayers (PEMs). The assembly of lipid layers with zwitterionic and charged lipids on PEMs is studied as a function of lipid and polyelectrolyte composition by the Quartz Crystal Microbalance. Polyelectrolyte lipid interactions are studied by means of Atomic Force Spectroscopy. We also show the coating of lipid layers for engineering different nanomaterials, i.e., carbon nanotubes and poly(lactic-co-glycolic) nanoparticles and how these can be used to decrease in vitro toxicity and to direct the intracellular localization of nanomaterials.


Assuntos
Engenharia , Ácido Láctico/química , Bicamadas Lipídicas/química , Nanopartículas/química , Nanotecnologia , Nanotubos de Carbono/química , Ácido Poliglicólico/química , Transporte Biológico , Células Hep G2 , Humanos , Espaço Intracelular/metabolismo , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Conformação Molecular , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
15.
Langmuir ; 32(25): 6263-71, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27267089

RESUMO

Supported membranes on top of polymer cushions are interesting models of biomembranes as cell membranes are supported on a polymer network of proteins and sugars. In this work lipid vesicles formed by a mixture of 30% 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 70% 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) are assembled on top of a polyelectrolyte multilayer (PEM) cushion of poly(allylamine hydrochloride) (PAH) and poly(styrene sodium sulfonate) (PSS). The assembly results in the formation of a bilayer on top of the PEM as proven by means of the quartz crystal microbalance with dissipation technique (QCM-D) and by cryo-transmission electron microscopy (cryo-TEM). The electrical properties of the bilayer are studied by electrochemical impedance spectroscopy (EIS). The bilayer supported on the PEMs shows a high resistance, on the order of 10(7) Ω cm(2), which is indicative of a continuous, dense bilayer. Such resistance is comparable with the resistance of black lipid membranes. This is the first time that such values are obtained for lipid bilayers supported on PEMs. The assembly of polyelectrolytes on top of a lipid bilayer decreases the resistance of the bilayer up to 2 orders of magnitude. The assembly of the polyelectrolytes on the lipids induces defects or pores in the bilayer which in turn prompts a decrease in the measured resistance.


Assuntos
Bicamadas Lipídicas/química , Polieletrólitos/química , Membrana Celular , Impedância Elétrica , Técnicas de Microbalança de Cristal de Quartzo
16.
Colloids Surf B Biointerfaces ; 145: 328-337, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27209385

RESUMO

Polyelectrolyte multilayers (PEMs) of poly-l-lysine (PLL) and alginic acid sodium salt (Alg) are fabricated applying the layer by layer technique and annealed at a constant temperature; 37, 50 and 80°C, for 72h. Atomic force microscopy reveals changes in the topography of the PEM, which is changing from a fibrillar to a smooth surface. Advancing contact angle in water varies from 36° before annealing to 93°, 77° and 95° after annealing at 37, 50 and 80°C, respectively. Surface energy changes after annealing were calculated from contact angle measurements performed with organic solvents. Quartz crystal microbalance with dissipation, contact angle and fluorescence spectroscopy measurements show a significant decrease in the adsorption of the bovine serum albumin protein to the PEMs after annealing. Changes in the physical properties of the PEMs are interpreted as a result of the reorganization of the polyelectrolytes in the PEMs from a layered structure into complexes where the interaction of polycations and polyanions is enhanced. This work proposes a simple method to endow bio-PEMs with antifouling characteristics and tune their wettability.


Assuntos
Alginatos/farmacologia , Incrustação Biológica , Polieletrólitos/farmacologia , Polilisina/farmacologia , Temperatura , Adsorção , Animais , Bovinos , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/farmacologia , Microscopia de Força Atômica , Técnicas de Microbalança de Cristal de Quartzo , Soroalbumina Bovina , Espectrometria de Fluorescência , Propriedades de Superfície , Água/química , Molhabilidade
17.
Macromol Biosci ; 16(4): 482-95, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26663657

RESUMO

Polyelectrolyte multilayers (PEMs) with different polycation/polyanion pairs are fabricated by the layer-by-layer technique employing synthetic, natural, and both types of polyelectrolytes. The impact of the chemical composition of PEMs on cell adhesion is assessed by studying cell shape, spreading area, focal contacts, and cell proliferation for the A549 cell line. Cells exhibit good adhesion on PEMs containing natural polycations and poly(sodium 4-styrenesulfonate) (PSS) as polyanion, but limited adhesion is observed on PEMs fabricated from both natural polyelectrolytes. PEMs are then assembled, depositing a block of natural polyelectrolytes on top of a stiffer block with PSS as polyanion. Cell adhesion is enhanced on top of the diblock PEMs compared to purely natural PEMs. This fact could be explained by the interdigitation between polyelectrolytes from the two blocks. Diblock PEM assembly provides a simple means to tune cell adhesion on biocompatible PEMs.


Assuntos
Adesão Celular/efeitos dos fármacos , Polietilenos/farmacologia , Polilisina/farmacologia , Polímeros/farmacologia , Compostos de Amônio Quaternário/farmacologia , Ácidos Sulfônicos/farmacologia , Células A549 , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Forma Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Adesões Focais/efeitos dos fármacos , Adesões Focais/fisiologia , Humanos , Polietilenoimina/química , Polietilenoimina/farmacologia , Polietilenos/química , Polilisina/química , Polímeros/química , Compostos de Amônio Quaternário/química , Relação Estrutura-Atividade , Ácidos Sulfônicos/química , Propriedades de Superfície
18.
Beilstein J Nanotechnol ; 6: 2310-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734521

RESUMO

A novel and facile method was developed to produce hybrid graphene oxide (GO)-polyelectrolyte (PE) capsules using erythrocyte cells as templates. The capsules are easily produced through the layer-by-layer technique using alternating polyelectrolyte layers and GO sheets. The amount of GO and therefore its coverage in the resulting capsules can be tuned by adjusting the concentration of the GO dispersion during the assembly. The capsules retain the approximate shape and size of the erythrocyte template after the latter is totally removed by oxidation with NaOCl in water. The PE/GO capsules maintain their integrity and can be placed or located on other surfaces such as in a device. When the capsules are dried in air, they collapse to form a film that is approximately twice the thickness of the capsule membrane. AFM images in the present study suggest a film thickness of approx. 30 nm for the capsules in the collapsed state implying a thickness of approx. 15 nm for the layers in the collapsed capsule membrane. The polyelectrolytes used in the present study were polyallylamine hydrochloride (PAH) and polystyrenesulfonate sodium salt (PSS). Capsules where characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and Raman microscopy, the constituent layers by zeta potential and GO by TEM, XRD, and Raman and FTIR spectroscopies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...